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Introduction

The surge of interest in Darwinian medicine (DM), also referred to 
as evolutionary medicine, began approximately 30 years ago when 
George Williams and Randolph Nesse published “The Dawn of 
Darwinian Medicine” in The Quarterly Review of Biology.1 They 
discussed how a significant amount of our human vulnerability to 
disease is a product of our evolutionary history. This extends to 
infection, injury, toxin exposure and the transition from archaic to 
novel contemporary environments (including dietary, psychologi-
cal and physical changes that have taken place in recent history). 
The short, sharp interpretation of this is that evolution does not 
favour long-term good health but rather fecundity and the propa-
gation of genes.2 If we examine human diseases through an evolu-
tionary lens, we can gain a more objective and useful perspective 
on health. Elizabeth Pennisi pointed out that fever and diarrhoea 

are suboptimal weapons for dealing with infection, and that the 
immune response is always behind the curve in handling rapidly 
evolving pathogenic micro-organisms.2 However, I would argue 
that the most interesting and relevant aspect of DM is the mis-
match between our “slowly” evolving physiology and biochem-
istry, and the rapid adoption of novel, modern environments, em-
bracing dietary and other cultural shifts that have happened swiftly 
compared to our gently shifting “stone age” genes.2,3 Thirty years 
ago, Darwinian thinking was not incorporated into medical curric-
ula, and for the most part, evolutionary biologists had little interest 
in how ancestral evolutionary forces might have shaped contempo-
rary health. Fortunately, things are changing, and in recent years, 
insights in evolutionary biology have been integrated into medical 
research, thinking and education.2,4

Although contemporary DM applies evolutionary theory to 
evaluate the possible reasons why natural selection has rendered 
humans vulnerable to disease, there is a degree of historical prec-
edence for our current understanding. Fabio Zampieri described 
how between 1880 and 1940, many scientists attempted to formu-
late general evolutionary theories of disease caused by deleterious 
traits that escape elimination through natural selection.5

Today, it is important for us to recognise that DM is not an alter-
native form of medicine. Indeed, it is the exact opposite. That is, it 
promotes enquiry into both the immediate and longer-term causes 
of disease. Specifically, the “how” and the “why”.6 Ultimately, the 
goal of DM is to permit clinicians to view health and disease from 
an evolutionary perspective and use this information to adopt ef-
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ficacious and preventative strategies.6
In the present article, key topics in DM are discussed in detail, 

including how the co-evolution of diet and culture has impacted 
health (with respect to specific genes), whether adult health and 
disease are influenced by developmental origins (pre- and post-
natal), and how evolutionary biology might impact the ageing pro-
cess. The merits of the hygiene hypothesis, and how personalised 
medicine (drugs and nutrients) can be prescribed on the basis of an 
individual’s genetic profile are also considered. Figure 1 provides 
a simplified schematic that shows some of the key aspects of evo-
lutionary biology that shape the human phenome and permit a DM 
approach to understanding and maintaining human health (fitness).

Selected topics in Darwinian medicine

Diet-culture coevolution and health

Although much conjecture exists (particularly between disci-
plines), many scientists consider that the Anthropocene began 
when our ancestors first harnessed fire for cooking (0.5–1.5 × 106 
years BP). Consistent with this, ensuing hominins evolved smaller, 
weaker jaws and compact dentition, indicating less need for chew-

ing, gnawing and shearing. Cooking would have increased meat 
consumption, fostering encephalisation, along with the evolution 
of reduced gut size. Furthermore, bipedalism and anatomically re-
modelled hands evolved for tools and weaponry.7 Given our newly 
evolved intellectual and physical capacity, the scene was set for 
our species to reshape the world rather than be shaped by it. How-
ever, biocultural adaptations to a range of new food sources have 
led to a clinically relevant discordance between our ancient genes 
and modern diets and lifestyles. This is a phenomenon linked to 
what is often referred to as the “diseases of affluence” or “diseases 
of civilisation”.3,8

Three major human dietary transitions have occurred, and these 
have contributed to both historical and contemporary disease bur-
den. Following the Pleistocene ice age, large prey animals became 
scarce in Europe as humans became more efficient predatory hunt-
ers, and so hunter-gatherers were eventually replaced by sedentary 
farming communities that had mastered the domestication of both 
animal and plant species.9–12 Hand in hand with a settled agro-pas-
toral lifestyle came increased disease as a negative correlate. This 
transition occurred approximately 11,000 years BP in the Middle 
East and more recently in other geographic locations (9,000 years 
BP in SE Asia, and 5,000 years BP in Sub-Saharan Africa and the 
Americas).13,14 The major outcome of this transition was the devel-
opment of large settlements (civilisation). We now recognize that 
urbanisation had a strongly negative impact on ancestral wellbeing.3

From a human health perspective, the domestication of animals 
changed the meat composition from that of wild game. Domesti-
cated meat had higher saturated fats and cholesterol,15 while crop 
monocultures led to monotypic diets with lower nutrient diversity. 
High population density in settlements, along with the domesti-
cation of animals, promoted virulent diseases, water stress and 
periodic food shortages, as well as dramatic famines.16 Indeed, 
the rates for disease, famine and parasite burden were higher in 
farming communities when compared to those in hunter and for-
ager communities. Conversely, longevity and physical stature were 
predictably lower. Consistent with this, iron deficiency anaemia 
was higher amongst farmers.17 Overall, pre-agrarian forager popu-
lations were probably far healthier and free from chronic disorders, 
such as diabetes, with obesity being almost non-existent.3

We are now approaching 40 years since the publication of the 
“evolutionary discordance hypothesis”. According to this, depar-
tures from the diet and activity patterns of our hunter-forager an-
cestors contributed greatly and in specifically definable ways to 
the endemic and chronic pathologies of modern civilization.18 This 
paradigm should sit center stage in facing our long-term nutritional 
and health challenges.

The Industrial Revolution heralded the second major dietary 
transition and made foods that were never before encountered 
during human evolution accessible to all. These included refined 
sugar, vegetable oil and cereals. One of the best examples of how 
this led to a diet-culture coevolution mismatch with serious health 
implications is given by the story of homocysteine and vascular 
disease. The industrial-scale refinement of wheat flour contributed 
to a loss of essential micronutrients, particularly folic acid and 
vitamin B6. Low blood levels of these two vitamins elevate vas-
culotoxic homocysteine. Today, we know that high homocysteine 
made an enormous contribution to late twentieth century cardio-
vascular disease mortality.19,20 It is fortuitous that this evolutionary 
mismatch, which led to serious morbidity and mortality, can be 
corrected by the simple measure of introducing folate into the diet 
through both mandatory and discretionary fortification programs. 
This is a good example of DM, with the bonus of preventing neural 
tube defect-affected pregnancy,21 which is ostensibly the main rea-
son for fortification. To provide context, in 1995, it was calculated 

Fig. 1. The simplified schematic shows some of the key aspects of evolu-
tionary biology that shape the human phenome and permit the Darwin-
ian medicine approach to the understanding and maintenance of human 
health (fitness). 
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that mandatory folic acid fortification in the US could prevent ap-
proximately 50,000 coronary artery disease deaths each year.22 
Three years later, in 1998, mandatory fortification was implement-
ed. Today, at least 80 countries have adopted a similar fortification 
strategy.23

The third and final major dietary transition relates to the perva-
sive uptake of processed and “junk” foods. One only has to con-
sider that following the Industrial Revolution, refined and dairy 
products comprised 72.1% of the total dietary energy intake in 
the US. By comparison, energy intake would have been a fraction 
of this in the pre-agricultural hominin diet.3,8 Modern society has 
also disrupted diurnal rhythms, with consequences for eating pat-
terns at the individual, family and societal levels. This change has 
led to the creation of the so called, “obesogenic environment”: a 
melding of poor lifestyle choices, aberrant dietary patterns, digital 
technology and importantly, thrifty stone-age genes. From the DM 
perspective, it is quite clear that the human phenome is morphing 
under the pressure of changing cultural norms, which include the 
following:

•	 The conflict between thrifty genes that evolved to help our 
ancestors ride out famine and unhealthy modern obesogenic 
environments.

•	 The move toward smaller families and late reproduction in 
the developed world. This conspires with the increasing need 
for in vitro fertilization, and would likely be a challenge to 
natural selection, promoting ever greater infertility.24,25

•	 The information age. Since the advent and mass adoption of 
information technology in the early 1990s, our personal and 
connected “virtual” worlds have been subsumed within an 
extended anthropogenic phenotype, further promoting a sed-
entary lifestyle. Across the planet, computers and handheld 
portable devices have disengaged us from the real, physical/
natural world, reducing caloric expenditure in the face of in-
creased caloric intake and thrifty genes.

Some of the best described maladapted phenotypes associated 
with today’s dietary landscape, born out of nineteenth and twen-
tieth century advances in food technology are: type 2 diabetes, 
dental caries, coronary artery disease, obesity, and several others. 
Collectively, these have been referred to as manifestations of the 
syndrome known as “saccharine disease”. This phrase was first 
coined by Thomas Latimer Cleave (1906–1983), an English sur-
geon who highlighted the negative effects of consuming refined 
carbohydrates that would not have been available during early hu-
man evolution. Aligned with the concept of DM, Charles Darwin’s 
writings provided the scholarly framework for Cleave’s life pursuit 
of better understanding diet-health relationships, particularly the 
maladaptation of the human body to modern Western diets.

Ultimately, however, what is most concerning is a likely fourth 
dietary transition hovering on the near horizon. Economist and de-
mographer Thomas Malthus (1766–1834) stated that “The power 
of population is indefinitely greater than the power of the earth to 
produce subsistence for man”. In other words, long before “global 
warming and planetary health” became an issue, Malthus recog-
nised that human exponential population growth would outstrip 
the availability of food and other resources. Hence, this potential 
fourth transition would be marked by famine, disease, conflict, 
and a catastrophic shift in natural, geopolitical and social balance. 
His intellect was ahead of its time because Malthus observed that 
humanity has a propensity to use food abundance for population 
growth rather than for sustaining a higher quality of life. Today, 
we refer to this as the “Malthusian spectre” or “Malthusian trap”. 
He suggested that human populations would grow until lower so-
cioeconomic groups falter and become susceptible to famine and 
disease, a scenario referred to as a “Malthusian catastrophe”. The 

big question is how will humans adapt to this version of our future? 
As the pace of such change would likely be rapid, it is unlikely 
that human diet-culture coevolution would have time to be adap-
tive in terms of long-term health outcomes. Despite this, it is en-
couraging to consider that with our 3.3 × 109 base pairs, of which 
99.9% are monomorphic, humans have sufficient polymorphic loci 
(2.97 × 106, one per 300 nucleotides) to accommodate phenotypic 
variation without causing death or notable disease. This provides 
a reserve capacity for phenotypic adaptation to cope with the full 
repertoire of environmental selection pressures.

There are a large number of important diet-related genes that 
have evolved to adapt to our environment or that have failed to 
evolve quickly enough to prevent maladaptation to our contem-
porary world. Indeed, some genes exhibit both of these traits, a 
phenomenon embracing antagonistic pleiotropy. Antagonistic plei-
otropy is where a gene confers benefits early in the lifecycle but 
is detrimental to the organism’s fitness later in the lifecycle.26,27 
Understanding these benefits is critically important to the applica-
tion of DM, and to a better overall perspective of diet-culture co-
evolution in health sciences. Tables 1 and 228–71 provide examples 
of important genes.

No discussion on diet-culture coevolution and health would be 
complete without mentioning “thrifty genes”. Contemporary ideas 
on the theory of thrifty genes and thrifty phenotypes label these 
phenomena as metabolic characteristics that permit frugality in the 
deposition or expenditure of energy.72 The belief is that while these 
traits emerged during the evolution of our species to buffer repro-
duction as a countermeasure to ecological stochasticity (unpredict-
able food sources), actions occur on differing timescales. That is, 
thrifty genes are rooted in our far-off ancestral past, although some 
thrifty phenotypes are primed to occur over a single or recent num-
ber of lifecycles (refer to DOHaD below).

Highly adaptive genotypes/phenotypes that confer a survival 
advantage within certain environmental contexts can be maladap-
tive under different ecological contexts. A good example is given 
by thrifty traits on remote oceanic islands, where food availability 
is unpredictable. On Nauru, a Micronesian Pacific island, 30–40% 
of older island teenagers have type 2 diabetes as a comorbidity of 
obesity, which has arisen from the mismatch between thrifty genes, 
calorie rich diet and sedentary lifestyle (a model obesogenic envi-
ronment). A traditional islander’s life will have been harsh, and so 
an ability to quickly build up fat reserves at times of abundance 
would help them survive the resource bottleneck of famine and 
provide them with an enormous survival advantage. Genes that 
confer this survival advantage under ancestral conditions have re-
sponded badly to typical Western diets. On Nauru, the island grew 
prosperous on the back of fertilizer derived from the island guano 
deposits. The result was a perfect storm: archetypal sedentary life-
style, calorie-rich diet, and incompatible ancestral (thrifty) genes. 
Type 2 diabetes represents the leading cause of non-accidental 
mortality on the island. Among the important genes linked to in-
sulin resistance/type 2 diabetes in Nauru are leptin receptor (Pro-
1019Pro) and apolipoprotein D Taq1 polymorphisms.72,73

Although ‘‘thrifty’’ genes, such as the given examples, can help 
to buffer resource bottlenecks during periods of famine, we now 
recognize that from a diet-culture coevolution perspective, po-
tent natural selection and genetic drift have acted speedily to alter 
approximately 700 genomic regions in our relatively recent past 
(between 15,000 and 5,000 years BP).74–76 As shown in Tables 1 
and 2, it is clear that a blur exists between diet-related genes that 
afford beneficial vs. adverse outcomes. This dichotomy can be in-
fluenced by lifecycle stage, a broad range of environmental-relat-
ed parameters, and social factors. With this in mind, it is difficult 
to ignore how relevant an evolutionary perspective is to modern 
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medicine, arguing the case for Darwinian/evolutionary theory to 
be established as a cognate element within undergraduate medical 
programs.2,77

A fundamental question will inevitably arise: why do many of 
the aforementioned diseases actually exist? Many may see the an-
swer as having a metaphysical connotation, but as with so many 
evolutionary paradigms, the answer is relatively simple. First, 
natural selection acts slowly, allowing for a mismatch to occur 
between our bodies and quickly formed novel environments. Sec-
ond, natural selection is constrained, meaning that any given trait 
is a probable trade off. Third, r/K selection of organisms promotes 
success in specific environments, shaping species for a trade-off 
between the number and quality of offspring, but critically not 
long-term degenerative conditions and human suffering. The r/K 
paradigm has developed into a rigorous model for the evolution of 
life histories, and these are discussed at length by David Reznick 
and colleagues.78 Ultimately, the outcome is that non-communica-
ble metabolic disease has not been shaped by natural selection but 
rather by our vulnerability to this kind of disease. In what appears 
almost to be counter-intuitive, natural selection is thus as much 
about maladaptation as it is adaptation.

It is worth noting that in the developed world, there are few 
energetic limitations on reproduction. Combined with modern 
medicine, this makes any selective advantage or disadvantage of a 
genotype far less significant than it would have been to our ances-
tors. This is particularly true given that human populations are no 
longer isolated, and consequently, the geographic flow of genetic 
information is very high. Therefore, has human evolution stalled? 
Well no, not at all - humans must still respond to infection, and this 
remains a significant target for evolutionary processes, which is a 
topic dealt with below.

Developmental Origins of Health and Disease (DOHaD)

The narrative thus far deals with genes and a longer term evolution-
ary origin to environmental maladaptation and disease. However, 
the DOHaD addresses shorter term effects over an individual or a 
limited number of lifecycles; the DOHaD addresses the link be-
tween early maternal diet (i.e., in utero nutritional environment) and 
later life health outcomes (i.e., maladapted phenotypic outcomes). 
While this is now a well-documented topic, Lewis and colleagues79 
have added in the likelihood that the way the placenta responds to 
these short term nutritional signals will itself be subject to natural 
selection to increase Darwinian fitness (optimal foetal growth).

DM strikes at the core of the DOHaD paradigm, with mater-
nal undernutrition during pregnancy/undernutrition in infancy/
impaired nutrient transfer to embryo and/or foetus leading to meta-
bolic adaptations that augment immediate foetal/neonatal survival. 
However, when such changes become fixed, they modify cellular 
function/structure in the liver and muscle tissues and alter hormone 
receptor density. The story first began to unfold when Hale and 
Barker80,81 proposed that these kinds of changes remain beneficial 
in the long term if nutrition is restricted.82 However, they postu-
lated that these changes can become deleterious within a contem-
porary obesogenic environment.80,81,83–86

It is becoming clear that many chronic adult diseases exhibit a 
long latency that originates from early life exposures that propa-
gate developmental plasticity as a biological adaptation for sur-
vival. This developmental plasticity is underscored by epigenetic 
changes, including DNA methylation and histone modifications, 
now firmly established as mechanisms that regulate gene expres-
sion via the remodelling of chromatin.

We now know that biochemical mechanisms such as these fa-
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cilitate the genome and epigenome in shaping human phenotypic 
traits. Indeed, it is a DM cornucopia of possibilities because epi-
genetic modifications can arise from a number of environmental 
exposures, including nutrients (type/amount), xenobiotics, toxins, 
ultraviolet radiation, temperature, rainfall, altitude, etc. This point 
is amplified when one considers that even monozygotic twins that 
share the same DNA diverge after birth as a direct consequence 
of epigenetic modifications arising from this tapestry of different 
exposures.

Of course, from a DM perspective, DNA methylation occurs 
throughout the human lifecycle, not just at the earliest phase, and is 
dependent upon the availability of methyl groups (sources include; 
folic acid, choline, vitamin B12 and methionine, with provision 
also under the influence of key gene variants such as MTHFR). 
DNA methylation is critical for the regulation of important devel-
opmental processes, including genomic stability, gene imprinting 
and regulation, transposon silencing, and the direction and main-
tenance of cell lineage.87–89 Randolph Nesse and colleagues90 pro-
vide a detailed review of “evolutionary molecular medicine” as a 
critical cognate element within DM, and I would argue that it is 
also a particularly important facet of the DOHaD, which itself has 
grown into a major subdiscipline of the life sciences. To illustrate 
this, consider how small size or relative thinness at birth and during 
infancy correlates with later life osteoporosis, cardiovascular dis-
ease, stroke, type 2 diabetes, obesity and metabolic syndrome.91,92 
Clearly, the DOHaD construct allows early dietary exposure to be 
an exigent force in determining adult phenotype, with both benefi-
cial and maladapted phenotypes possible depending on early-late 
life nutritional disparity.

Within the DOHaD, plastic adaptation to early-life dietary ex-
posure via epigenetics is now recognised as being transgeneration-
al, adding to the difficulties of interpretation. However, put simply, 
embryonic/foetal/infant adaptive plasticity harmonises humans to 
their nutritional environment. The negative and clinically impor-
tant correlate being that a mismatch in contemporary and early nu-
tritional environments fits the DOHaD model, particularly in the 
context of vascular and metabolic diseases.93 I would argue this 
adaptive/maladaptive phenomenon sits comfortably within a DM 
context, even though time frames are shorter than the usual evolu-
tionary chronology.

Ageing

The evolution of human life history

Let us begin with the obvious question – “how long can humans 
live”? Well from a Darwinian perspective, this is absolutely the 
wrong question. The correct one is “how long must humans live” 
in order to achieve Darwinian fitness? This has been addressed by 
Carnes and Witten, who suggest that 50–55 years is sufficient for 
humans to achieve this biological mandate.94 They further suggest 
that this (midlife) age boundary demarcates the transition from ex-
pected health and vigour to a period where vigour is increasingly 
difficult to maintain. More than 60 years ago, George Williams 
developed and applied his theory of antagonistic pleiotropy to 
ageing, implicating genes that were favoured by natural selection 
during the reproductive phase of life, but with the same genes pro-
moting an ageing phenotype in later life.27 This paper, published 
the year before I was born, is a classic, and while the paper and I 
have physically aged (matured!), antagonistic pleiotropy has been 
found to be a common phenomenon, although the trade-off be-
tween reproduction/fecundity and longevity/lifespan is not always 

present.95 Certainly, trade-offs between fecundity and longevity 
are commonplace in wild animal populations where natural selec-
tion pressures are strong, but interestingly, when the selection pres-
sures that drive this antagonistic pleiotropy are relaxed in captive 
species, these trade-offs are absent.96

Other theories of ageing that sit alongside antagonistic pleiot-
ropy include Peter Medawar’s theory of mutation accumulation97 
and the disposable soma theory of Kirkwood and Holliday.98 How-
ever, the earliest thoughts on how ageing evolved were considered 
by August Weismann, who developed the idea of programmed 
death, whereby ageing evolved to the benefit of the species, not 
the individual.99,100

Broadly speaking, the disposable soma theory of senescence 
maintains that organisms age because of an evolutionary trade-off 
between growth, reproduction, and the critical repair of DNA.98,101 
This theory was originated by Thomas Kirkwood; his disposable 
soma model explains that an organism only has finite resources 
for allocation to its various critical cellular processes. Thus, a larg-
er investment in growth and reproduction inevitably results in a 
lesser investment in DNA repair processes. This shift in the use of 
resources leads to increased cellular damage, shorter telomeres, a 
build-up of genetic mutations, and ultimately senescence.

Clearly, a balance needs to be struck. If the investment is too 
low in repair/maintenance biochemistry, it would be evolutionar-
ily unsound because the age of mortality would likely precede the 
reproductive phase of the lifecycle. However, if the investment is 
too high in repair/maintenance biochemistry, it would also be evo-
lutionarily unsound because the individual’s offspring would have 
a higher likelihood of dying before reaching reproductive age. Ul-
timately, there must be a biological compromise with resources 
partitioned fittingly. Despite such a compromise, it is believed that 
damage occurs to somatic repair and maintenance systems, modu-
lating the rate of senescence.102

Consideration of the role of ageing in evolutionary models has 
raised interesting possibilities for supplements that might buffer 
cell repair/maintenance biochemistry, particularly in the context of 
nutritional cofactors and anti-oxidants. Recent research has shown 
that a variety of anti-oxidants can protect against the UV-related 
loss of folate in lightly pigmented individuals. Folate is essential 
for DNA repair,103 and anti-oxidants may therefore help buffer se-
nescence processes.

There are many other ideas on senescence, however, two are 
worth mentioning as they conflict with the disposable soma para-
digm. First, calorie restricted diets can extend life, but they also 
elicit an adaptive process which causes the organism to partition 
a higher proportion of resources into somatic maintenance/repair, 
deflecting critical resources from reproduction104 – a process that 
does not make these two paradigms mutually exclusive. Others 
have critiqued the disposable soma theory because it fails to ad-
dress why women tend to live longer than men.105 This can be 
explained via the Grandmother Hypothesis, which suggests that 
menopause exists in women to restrict the length of the reproduc-
tive phase of the lifecycle as a protective mechanism. This allows 
females to live longer and increase the amount of care they subse-
quently provide to their grandchildren (alloparenting), increasing 
their overall evolutionary fitness.106

Peter Medawar’s theory of mutation accumulation97 is often 
discussed; it posits that harmful mutations are only expressed in 
later life, when reproduction has ceased and future survival is sig-
nificantly diminished. After reproduction, natural selection will be 
weak and these harmful mutations are thus not eliminated. Meda-
war suggests that over time, these mutations, which are deleterious 
in late life, accumulate due to genetic drift and lead to the evo-
lution of what we now think of as senescence. Indeed, Medawar 
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developed the concept of a "selection shadow", where the shaded 
region of a graph of age vs reproductive potential represents the 
'shadow' of time during which selective pressure has no effect.107

Research is constantly refining our models, and a recent 2021 
article seems particularly relevant. Lam and colleagues108 have 
uncovered a bifurcating model of nutrient sensing via the central 
melanocortin pathway, with signalling through MC4R regulating 
the acquisition and retention of calories, whereas signalling via 
MC3R primarily regulates the disposition of calories into growth, 
lean mass and the timing of sexual maturation. Indeed, many of 
these ideas on evolution and ageing overlap with other paradigms 
such as the DOHaD. For example, the epigenetic profile is likely to 
be critical for ageing and age-related health. We know that prenatal 
exposure to famine during the 1944–45 Dutch Hunger Winter led 
to reduced DNA methylation of the insulin-like growth factor gene 
(IGF2) and increased methylation of leptin (LEP), interleukin 10 
(IL10) and other genes in famine subjects compared to non-fam-
ine same sex siblings 60 years after the famine occurred.109 Quite 
clearly, very early life famine (nutrition) exposure influences adult 
metabolism and hence disease phenotype, a proxy for senescence/
ageing rate.

Some specific genes are also very important to the overall pic-
ture. We now recognize that human longevity is heritable, and 
Deelen and colleagues110 showed that rs429358 apolipoprotein E 
(ApoE4 allele) is associated with lower odds of surviving to the 
90th and 99th percentile age, while rs7412 (ApoE2 allele) shows 
the opposite. Another key variant (rs7676745) located close to the 
G-protein-coupled receptor 78 gene (GPR78) has lower odds of 
surviving to the 90th percentile age. Overall, the study showed a 
role for tissue-specific expression of multiple genes in longevity. It 
also showed a genetic correlation of longevity with that of several 
disease-related phenotypes, pointing to a shared genetic architec-
ture between health and longevity.110

Disease

Cancer and dementia are two of the most significant degenerative 
diseases facing our ageing, contemporary society. Greaves111 has 
discussed the DM case for cancer. Much effort is put into better 
understanding of proximate mechanisms for cancer, but little is 
known about why humans are particularly vulnerable compared 
to other species. This vulnerability is likely a legacy of our evo-
lutionary history. That is, it has arisen at least in part as a conse-
quence of “design” constraints, compromises and trade-offs that 
are the currency of evolutionary processes. It is also important to 
recognize that the distribution of cancer-related gene mutations is 
under the influence of founder effects, drift, migration and popu-
lation structure and may account for a variable prevalence in dif-
ferent populations.111,112 The most obvious cancer related to an 
evolution-environment mismatch is skin cancer. Recent popula-
tion migrations have led to maladapted pale skin predominating 
in countries such as Australia and consequently an enormous in-
crease in the occurrence of all forms of skin cancer. Of course, the 
reverse is also true, and vitamin D photosynthesis is challenged 
in darker skin phototypes at northerly latitudes.113 Indeed, it is 
critical to note that many overt mismatches between genotype and 
environment/lifestyle occur in contemporary society, acting as a 
spark to tinder for carcinogenesis.

Molly Fox examined Alzheimer’s disease from the DM per-
spective.114 She grouped the theories on human susceptibility into 
eight previously recognised categories, based on novel extension 
of the lifespan: lack of natural selection pressure during the post-
reproductive phase; antagonistic pleiotropy; thrifty genotype, fast 

brain evolution; delayed neuropathy by selection for grandmoth-
ering; novel alleles selected to delay neuropathy; and by-product 
of selection against cardiovascular disease.114 The author also put 
forward a new hypothesis based on environmental mismatch.

Pharmacogenomics and nutrigenomics

The discipline of pharmacogenomics examines the role of the ge-
nome in drug response. The best studied, and probably most relevant 
drug-metabolizing enzymes belong to the Cytochrome P450 (CYP) 
family. These critical enzymes introduce reactive or polar groups 
into drugs and other xenobiotics, and among the best studied are CY-
P2D6, CYP2C19, CYP2C9, CYP3A4 and CYP3A5. Among them, 
these genes and their respective enzymes metabolise approximately 
70–90% of currently available prescription drugs.115,116 Of these, 
CYP2D6 is probably the best known and most extensively studied 
of all CYP genes. It is highly polymorphic, with over 100 variants 
identified.117 For example, there can be altered copy number and 
variation in the rate of metabolism (slow metabolisers are common 
in East Asia). This CYP enzyme is used to metabolize drugs includ-
ing morphine and tramadol, and genetic variation contributes to 
lower efficacy and increased side-effects.

Drug metabolising phenotypes are categorised as ultra-rapid 
metabolisers; extensive metabolisers (normal); intermediate me-
tabolisers; poor metabolisers. This kind of genetic variation can 
be particularly important in treating cancer. For example, genes 
coding for dihydropyrimidine dehydrogenase, UDP-glucuronosyl-
transferase, thiopurine methyltransferase, and cytidine deaminase 
are responsible for the pharmacokinetics of 5-florouracil/capecit-
abine, irinotecan, 6-mercaptopurine and gemcitabine/cytarabine, 
respectively. All these are highly polymorphic and, as such, can 
lead to severe toxicity and even death. Screening and adaptive dos-
ing can mitigate risk, and such challenges of pharmacogenetics sit 
within the realm of a Darwinian approach to medicine.

Nutrigenomics addresses the relationship between the human 
genome, human nutrition, and health. There is an obvious overlap 
with pharmacogenomics. An example of this is given by a study 
published in 2004 showing that the MTHFR C677T gene variant 
affects the intracellular level and distribution of folates and chang-
es the growth and chemosensitivity of colon and breast cancer cells 
to methotrexate and 5-fluorouracil.118 This common MTHFR vari-
ant may therefore be a useful pharmaco-/nutrigenetic determinant 
for tailored antifolate chemotherapy.119

Clearly, this narrative plays to the concept of personalised med-
icine, an increasingly important discipline within health and pre-
ventative medicine, and one that aligns perfectly with a Darwinian 
approach to medicine.

The hygiene hypothesis, microbiota, pathogens and parasites 
within the Darwinian perspective of human health

The hygiene hypothesis posits that recent and dramatic increases 
in allergies and autoimmune diseases in developed nations have 
arisen from reduced exposure to the full range of infectious im-
munoregulatory agents that ancestral humans were once exposed 
to. This model has gained considerable support based on strong 
epidemiological/research data.120

Early Homo sapiens would have been chronically infected by 
parasites.121 This would have increased following the domestica-
tion of animals and the development of larger urban aggregations. 
The cohabitation with animals and sedentary lifestyles (compared 
to hunter/gatherers) promoted disease transmission from livestock, 
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and the faecal-oral transmission of both pathogenic microbes and 
parasites. This pathogenic environment and co-existence would 
have been normal for our ancestors.

The microbiome

Even today, we are not individual entities – we play host to an 
inordinate number of creatures who live inside and on us and who 
would not be able to survive without us. Furthermore, despite what 
some people might like us to think, in many cases our lives are 
far better off with our miniature hitch hikers, than without them - 
generally not the case with parasites we might also harbor. Some 
definitions might help: Commensalism is a relationship in which 
two organisms associate but which benefits one partner without 
affecting the other. It contrasts with mutualism, in which both or-
ganisms benefit. Amensalism is a relationship in which one partner 
is harmed while the other is left unaffected. This latter relationship 
differs from parasitism, where one organism clearly benefits while 
the other is harmed. The microbiome by comparison is a phrase 
originally coined by Joshua Lederberg and refers to the totality of 
microbes, their genetic elements, and environmental interactions 
in a given environment.

With these definitions in mind, it becomes clear that the rela-
tionship between gut flora and humans is not simply commensal 
in nature (that is to say, a harmless coexistence), rather, it is often 
a mutualistic interaction. People can survive without gut flora, or 
with a modified flora, but this is far from ideal as these intestinal 
microorganisms perform a plethora of useful, indeed critical func-
tions. They can ferment unused energy substrates such as fibre (un-
digested carbohydrates) and subsequently absorb short chain fatty 
acids (butyrates, propionates, acetates), they stimulate/prime our 
immune system, and they prevent the overgrowth of harmful, path-
ogenic bacteria and even regulate the development of the gut. They 
are often credited with synthesizing vitamins that can be used by 
the host, although in the case of vitamin K, this represents a form 
of the vitamin (menaquinone) that seemingly is not particularly 
useful to the host during nutritional deprivation. Similarly, faecal 
loss of folate each day equates to the amount synthesized by the 
gut bacteria. Despite this, it is widely accepted that the intestinal 
flora does contribute to our vitamin status. They may also gener-
ate hormones that facilitate fat storage and help to metabolise bile 
acids, sterols and xenobiotics. When this beneficial “microbiome” 
is out of equilibrium, opportunist pathogens can expand and lead 
to infection and even increased cancer risk.

Our human microbiome is site specific, and while in the gut, 
beneficial species include Lacobacilli, such as L. acidophilus, 
other parts of our body such as our skin, mouth, and genitals, 
have their own favoured resident species. In the gut, for example, 
providing a prebiotic such as fructo-oligosacharides can promote 
the growth of beneficial bacteria such as bifidobacterial species. 
Increases in the beneficial species L. acidophilus can also bring 
benefits. There are many mechanisms at work, but one includes 
modifying the colonic ecosystem. L. acidophilus can lower colonic 
pH (increase lactic acid) and raise redox potential, which favours 
further colonization by health promoting bacteria. These kinds of 
mechanisms inhibit the growth of potentially harmful pathogens 
such as: gram +ve and –ve bacteria, such as E. coli, Bacterioides, 
Fusobacterium, C. perfringens, Salmonella sp., Listeria sp., Shi-
gella sp., Campylobacter and Vibrio cholerae.

There is little doubt that the “good” bacteria have evolved to be 
in our gut: components of the host flora share common antigenic 
epitopes with the intestinal mucosa, giving a biochemical basis to 
immune tolerance of host to resident bacteria.122

Given the number and diversity of cells that conspire to form 
our microbiome and its enormous impact on human health, some 
scientists have advocated that the microbiome is actually an en-
tirely new organ system in its own right. As such, it is likely to 
have changed over the anthropocene. Walter and Ley123 suggest 
that the advent of agriculture altered human diets, particularly in 
the context of starch and milk being added to diets in many parts 
of the world. Genetic evidence indicates that people able to utilize 
starch and milk directly using their own host enzymes, while mini-
mizing microbial fermentation, had a selection/fitness advantage. 
Our contemporary diets, which are even richer in simple substrates 
compared with Neolithic diets, interact with features of contempo-
rary lifestyle to further stress the interactions between ourselves 
(host) and our microbiota, partially contributing to today’s plan-
etary epidemic of metabolic disorders.

This idea that change has occurred to our microbiome is dem-
onstrated rather well by a comparative study on the impact of diet 
in shaping gut microbiota in children from Europe and Burkina 
Faso (rural West Africa where the fiber content is similar to that 
of ancestral human settlements at the time of the birth of agricul-
ture).124 In this study, Filippo and colleagues showed Burkina Faso 
children exhibited enrichment in Bacteroidetes and depletion in 
Firmicutes species, with a unique occurrence of bacteria from the 
genus Prevotella and Xylanibacter, species containing bacterial 
genes for cellulose and xylan hydrolysis, that were completely 
lacking in European children. They also found more short-chain 
fatty acids and less Enterobacteriaceae in Burkina Faso children 
than in European children. They interpret this to mean that the gut 
microbiota coevolved with a polysaccharide-rich diet in Burkina 
Faso individuals, allowing them to maximize energy intake from 
fibre while simultaneously protecting them from inflammations 
and non-infectious colonic disorders. Quite rightly, they suggest 
that this comparison of human intestinal microbiota from children 
subject to a modern western diet and a rural diet, highlights the 
importance of preserving this treasure of microbial diversity from 
ancient rural communities worldwide.124

With such heterogeny at play, it is important to retain a context 
in which our microbiome evolved to be generally non-pathogenic 
(benign unless they grow abnormally), and that as a result, they 
exist in harmony in a symbiotic association with us. We are now 
starting to see beyond this and recognize that they may influence 
autoimmune diseases such as multiple sclerosis, rheumatoid arthri-
tis, diabetes, and possibly some cancers. Evidence is also emerging 
that common obesity might also be exacerbated by a poor blend of 
microbes in the gut.125

Moving to the outside of our body, the skin is interesting be-
cause it contains a number of discrete microenvironments. The mi-
crobiota here is as varied as other planetary organisms adapted to 
desert, rainforest or marine biomes. The analogy isn’t so frivolous 
- according to Davis,126 our resident dermal bacteria are charac-
teristic of three main regions of skin: A) axilla (armpit), perineum 
(area between the anus and scrotum in males and between the anus 
and posterior vulva junction in females), and toe webs; B) hand, 
face and trunk; and C) upper arms and legs. He suggests that par-
tially occluded skin (axilla, perineum, and toe webs) has a higher 
count of microorganisms than less occluded areas such as our 
legs, arms, and trunk. Most notable is Staphylococcus epidermis, 
which is the predominant skin resident. This anaerobe represents 
approximately 90% of the skin microlife. Within the nasal cavity 
and around the perineum, Staphylococcus aureus is present in up 
to one-third of people but is present in two-thirds of people on 
their vulvar skin. Micrococci and diptheroids are also prevalent. 
The latter seem to be relevant in acne pathogenesis. Streptococci 
are also found on the skin, but also in the mouth, where strains are 
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important in converting sugars into acids that can lead to tooth 
decay (streptococcus mutans). This is actually a significant micro-
organism as dental caries and periodontal disease (gingivitis) af-
fects in the region of 80 percent of the population in the developed 
world. The nails have a similar array of microorganisms but also 
carry fungi (Aspergillus, Penicillium, Mucor and Cladosporium). 
In moist areas where desiccation is less likely, you find Enterobac-
ter, Klebsiella, Escherichia coli, Acinetobacter and Proteus spp.

It now seems to be emerging that we have quite a varied skin 
microflora but that within this variation between individuals is a 
relatively constant (preserved) scaffold/core of bacterial species. 
The complexity of this ecosystem is affected by the human envi-
ronment, including our shampoo, soap, washing powder and cloth-
ing materials, so this is quite a difficult question to address. In the 
context of the gut microflora, an attempt is being made to classify 
individuals by enterotype (i.e., by an individual microfloral com-
position). Sequenced fecal metagenomes suggest that three robust 
clusters exist that are not related to the individuals’ geographic ori-
gins.127,128

The microflora of the gut and skin seems to change with age, 
and this is also true of the urogenital flora. Vaginal microflora are 
altered according to age, vaginal pH, and hormone levels. Tran-
sient microorganisms can cause issues, such as with the yeast, 
Candida albicans. One of the more painful, common problems 
when the dermal microflora falls out of equilibrium is conjunc-
tivitis. The conjunctiva is typically home to very few, or indeed, 
no microorganisms. In tests, Haemophilus and Staphylococcus are 
the genera most often seen. As infectious as conjunctivitis is, you 
are far more likely to get an initial pathogen colonization occur-
ring in the upper respiratory tract. The trachea and pharynx mostly 
contain bacterial genera found in the normal oral cavity (typically 
α-and β-hemolytic streptococci). They do also contain anaerobic 
staphylococci, neisseriae, diphtheroids, and others. Among the 
potentially pathogenic organisms that are found in the pharynx 
are haemophilus, mycoplasmas, and pneumococci spp. The upper 
respiratory tract is where the pathogens, Neisseria meningitides, 
C. diphtheriae, Bordetella pertussis, and others get their first foot-
hold. The lower respiratory tract, containing small bronchi and al-
veoli, is by comparison a sterile desert. Anything that did make it 
this far would need to face off attack by immune sentinels such as 
alveolar macrophages.

Antibiotics

We continually hear how uncontrolled antibiotic use has led to the 
acquisition of resistance to therapy by a number of pathogenic mi-
croorganisms. With this in mind, it is interesting to consider the 
novel treatment of Clostridium difficile (C. difficile), the most fre-
quently identified cause of nosocomial infectious diarrhoea in the 
US. A 2013 study reported in the New England Journal of Medi-
cine revealed that the infusion of donor faeces for the treatment of 
recurrent C. difficile infection was proven to be three times more 
effective than antibiotics in curing infection by this organism.129 
Gut health would thereby appear to require a holistic view, in 
which the overall microbiotic ecosystem needs to be in balance. 
This is most obvious in the case of the gastrointestinal tract, but 
this must presumably also be the case with other microbiotic sys-
tems and permits a Darwinian approach to treatment.

Hygiene hypothesis and atopy

There are some interesting correlates between our microbiota and 

important clinical conditions that we do not fully understand in 
terms of mechanisms of action and causal factors. One of the most 
fascinating relates to what has been termed the hygiene hypothesis 
of atopic disease (an atopy or atopic syndrome is a predisposition 
toward the development of certain types of allergenic hypersensi-
tivity reactions). This theory advocates that environmental chang-
es in our industrialised world have led to reduced microbial contact 
during early childhood and that this has resulted in a ballooning 
epidemic of allergic rhinoconjunctivitis, asthma and atopic ecze-
ma. In particular, it frames the importance of early life exposure to 
symbiotic microorganisms, including the gut flora and probiotics, 
as well as parasites. Worryingly, the rise in autoimmune diseases 
and acute lymphoblastic leukaemia in children within the devel-
oped world is often linked in to the hygiene hypothesis.

The hygiene hypothesis is fairly cohesive, especially when tak-
ing into account the Th1/Th2 paradigm of immune responsiveness 
(Th1 polarized response is not induced early in life, conditioning 
the body to subsequently be more susceptible to developing Th2 
related disease later in life), but it is recognized that it needs to be 
bolstered in key areas: A) the importance of infections in causing 
immune deviance may be outweighed by the stimulatory action 
of endogenous intestinal microbiota B) suppressive and modula-
tory immune responses complement the Th1/Th2 paradigm and 
C) protecting against atopy, guarding against infectious, inflam-
matory, and autoimmune diseases may be contingent upon healthy 
host-microbe interactions, which is an implicit component in the 
hygiene hypothesis.130

Although the hygiene hypothesis advocates that the recent 
surge in allergic and autoimmune diseases results from changes 
in the way humans interact with microbes within our ecosystem, 
this theory falls short in explaining A) why allergic asthma is in-
creasing in 'unhygienic' US inner cities B) why allergies are less 
prevalent among migrants' children living in large European con-
urbations C) why commonplace infections via airborne viruses 
don’t guard us against allergic sensitization D) why the inverse 
association between certain infections (i.e., hepatitis A) and aller-
gic diseases has been reproduced in some but not all populations 
and E) why probiotics do not prevent or correct allergic diseases. 
These are challenging questions that target the controversial nature 
of the hygiene hypothesis and should help us to better understand 
the hypothesis and allow identification of the infectious agents that 
are truly responsible for protecting against autoimmune and atopic 
diseases.131

Parasitism

Our species has a long history of coexisting with parasites. Egyp-
tian papyrus records dating back 5,000–6,000 years contain a writ-
ten record of parasites, including threadworms, Guinea worms and 
tapeworms. Greek philosophers such as Hippocrates again make 
reference to human parasites and parasites of other species, includ-
ing domesticated animals and fish. One of the standout parasitic 
diseases is so gross that no misinterpretation of the records is pos-
sible: dracunculiasis is a disease caused by the Guinea worm and 
is typified by the female worm exiting through the leg. This ab-
horrent symptom is so specific to the disease that it is recorded in 
many texts and plays through history. The first evidence we have 
from archaeological remains shows that humans living in northern 
Chile suffer from lung fluke, as 8,000-year-old fossilized faeces 
were found to contain the eggs of this parasite. Hookworm (Neca-
tor americanus) is a serious modern-day problem in parts of the 
developing world where it causes iron deficiency anemia in both 
men and women. In fact, it represents the major form of blood loss 
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in these regions. In Western countries, iron deficiency anaemia is 
still a problem, but only for females, largely due to heavy menstru-
al losses. As troublesome as periods can be, the alternative cause 
of anaemia – hookworm, is far less pleasant. The parasite is one 
of the most common roundworm infections of the intestine and is 
widespread in tropical and subtropical countries where locals often 
defecate on the ground and where the soil water content is opti-
mal for hookworm eggs to develop into worm larvae. The World 
Health Organization has suggested that hookworm disease affects 
as many as 740 million people worldwide. Indeed, globally, iron 
deficiency anaemia is the most prevalent nutrition related disease, 
in no small part due to hookworms.

Hookworm eggs pass onto the ground in human faeces where 
they develop into immature infective larvae in the cool moist 
soil. Larvae extend their bodies into the air and wave their bod-
ies around as if gently blowing in the wind. When they come into 
contact with human skin, typically when trodden on by a bare foot, 
they penetrate the skin, enter the bloodstream, and are transported 
to the lungs. From here, the larvae migrate into the windpipe and 
are then swallowed and carried down the gastrointestinal tract to 
the small intestine. As the worm mass accumulates, diarrhoea is 
likely, as well as cramping and nausea. The worm eggs eventually 
appear in the stool and begin the cycle afresh. If the infection be-
comes chronic, serious anaemia will develop. This is due to those 
serrated mouthparts munching on the intestinal wall and causing 
blood loss. Clearly, when an infection coincides with depleted nu-
trition, pregnancy, or malaria, the anaemia that develops can be 
severe. If nutritional health is good, a small worm burden is more 
easily tolerated.

Having described this rather unpleasant anatomical circuit that 
hookworms follow, it is interesting to consider the parasite in a dif-
ferent context. Experts now believe that without gut worms such 
as this, our immune system loses its natural equilibrium, leading 
to the development of allergies and sometimes serious conditions 
such as asthma. Therefore, this fits the “hygiene hypothesis” very 
nicely, albeit with rather larger organisms sharing our body space 
than I alluded to previously. Today, parasitic worms have largely 
been eradicated among humans living in developed countries. 
However, in some developing countries, two-thirds of all children 
have intestinal worms such as hookworms. What is most inter-
esting is that allergies are very rare in these children. One study 
showed that drug treatment to eradicate hookworm in children in 
SE Asia led to a significant increase in dust mite allergy. It there-
fore seems that over millions of years of co-evolution, worms and 
humans have evolved methods to suppress host immune responses, 
a process that quite obviously extends a worm’s survival inside our 
bodies.132

There is a parallel line of thinking with respect to Crohn’s and 
other autoimmune diseases. Indeed, diseases like this and ulcera-
tive colitis might be treatable by deliberately infesting patients 
with parasitic worms, such as whipworms and hookworms. This 
work has been pioneered by Joel Weinstock, a gastroenterologist, 
parasitologist and immunologist at Tufts University in Boston, 
who has used the pig whipworm (Trichuris suis) rather than the 
human whipworm (Trichuris trichiura) for therapy, as the porcine 
worm can not survive inside the human gastrointestinal tract for a 
long time. Helminth treatment certainly seems to protect against 
intestinal autoimmune disease in humans and is supported in ani-
mal models. In one study, Weinstock asked 29 participants with 
Crohn's disease to consume 2,500 pig whipworm eggs every three 
weeks for six months. A total of 79.3% of subjects improved sig-
nificantly, with 72.4% experiencing remission, but a placebo effect 
could not be ruled out.133 He also showed that this treatment is 
both safe and effective in patients with active ulcerative colitis.134

There is a pattern emerging, in which it is becoming increas-
ingly clear that treatments need to address our evolutionary past 
to be truly effective disease interventions – a DM perspective is 
beginning to appear. Treating C. difficile with healthy colonic in-
noculum is much the same as treating inflammatory bowel disease 
with pig whipworms. Correcting the evolved harmony of humans 
and our “subservient commensals” allows us to create a healthy 
equilibrium and is clearly an important component within the hy-
giene hypothesis.

The significance of the conditions I have mentioned as well as 
others, such as elephantiasis, schistosomiasis, malaria, and amoe-
biasis, cause a significant disease burden and need to be examined 
with an objective perspective. To this end, Mideo and Reece135 
have examined plasticity in parasite phenotypes in the context of 
the evolutionary and ecological implications for disease. They 
explore the field of DM to integrate disease prevention with an 
explanation of the variation in harm caused by parasites due to 
infectiousness. This can then inform the development of control 
strategies that prevent or withstand undesirable parasite evolution. 
The problem is that many parasites live in a hostile, dynamic en-
vironment – that is, the bodies of other organisms. This means that 
the success of integrating evolutionary biology with medicine, i.e., 
in a DM context, requires an improved understanding of how natu-
ral selection has solved the adaptive problems that parasite biol-
ogy is attuned to. Without question, parasites are “plastic”; that is, 
they experience a rapid and broad variation in the environmental 
conditions found inside hosts and vectors. With this in mind, there 
is increasing evidence for flexibility in the expression of parasite 
traits that underpin in-host parasite replication and between-host 
parasite transmission. By that I mean adaptation that extends from 
immune evasion traits to biological investment in transmissible 
forms. This kind of response (phenotypic plasticity) to variation 
in the environment (resource availability, in-host competition and 
pharmacologic treatment) keeps a parasite one step ahead in terms 
of survival (maximal fitness). In their review, Mideo and Reece135 
discuss how we might interject to give ourselves the advantage 
over our parasites.

Selected examples of the trade-off in providing an evolution-
ary advantage against infectious disease

Psoriasis is a polygenic condition with high-penetrance. Despite 
the unpleasant nature of this skin complaint and its increased rate 
of metabolic syndrome, skin lesions have been linked to enhanced 
wound healing and an improved ability to counter infection. In-
deed, it has been suggested that leprosy, tuberculosis and other in-
fectious entities act as stress factors that select psoriasis-promoting 
genotypes in some populations.136

There are times when both wildtype and homozygous reces-
sive genotypes are less fit than heterozygotes. When this occurs, 
both mutant and wildtype alleles tend to be maintained in a popula-
tion. This phenomenon is referred to as a heterozygote advantage 
or balanced selection. The classic example given to illustrate this 
principle describes how the amino acid valine is substituted for a 
glutamic acid in the haemoglobin molecule as a ‘molecular fix’ 
that can protect individuals from sickle cell anemia. The ‘mutant’ 
HbS allele is especially common where malaria is endemic be-
cause heterozygosity (HbAHbS) for this trait protects individuals 
against a life threatening parasitic infection (8% of all child deaths 
were due to malaria – 853,000 deaths/year in 2003). While the 
heterozygotes have an advantage, wildtype (HbAHbA) individuals 
are less able to contend with falcoparium malaria, and homozy-
gous recessive individuals (HbSHbS) suffer from overt sickle cell 
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anaemia, a dreadfully debilitating and often lethal clinical condi-
tion. Despite the awful presentation of the sickle cell anaemia phe-
notype, the frequency of HbSHbS individuals in parts of Africa 
within the malaria belt can reach as high as 4% of the population. 
Seemingly, the advantages of maintaining heterozygosity for this 
trait within the population are high, including a high cost in suf-
fering and disability within those recessive for the trait! Another 
example of the heterozygote advantage is given by Tay-Sachs dis-
ease. Here, heterozygosity confers a degree of protection against 
tuberculosis, despite the recessive trait proving fatal by the time a 
child reaches age four.

Future directions

The future direction surely has to be based on the two biggest 
challenges facing humankind: exponential population growth and 
climate change. How DM might help us better understand and 
address these issues is going to be important in the near future. 
Despite the teachings of Thomas Malthus that food production 
will not be able to keep up with growth in the human population, 
resulting in disease, famine and conflict, and despite a full under-
standing of the physics and chemistry behind global warming, we 
are still stumbling along with clearly outmoded lifestyles and eco-
nomic models.

Challenges in maintaining food security, acceptable health 
standards and well-balanced ecosystems are difficult given the re-
cent and rapid accent of Humankind, which has resulted in a seri-
ous phenotype-environment mismatch137 – we forget at our peril 
that humans depend on intact, working ecosystems. It follows that 
a better understanding of the observed impacts of climate change 
and population growth on core ecological processes is fundamen-
tal to our adaptation to them and mitigating their influence on bio-
diversity and other critical factors that reflect planetary health.138

A DM approach will help identify and define adaptive traits that 
help us survive at a higher population density and under altered en-
vironmental conditions. Natural selection of genetic variants will 
help in the longer term, but even in the short term, plastic pheno-
typic adaptations exist that follow seasonal cycles in light and tem-
perature.139 Similarly, in the short term, generational cycles based 
on epigenetic regulation may help tailor human biochemistry to 
new environments.86,92,93 These will both help us tune future hu-
man biology to a changing world.140,141

The final word has to be that human biology has a finite buffer-
ing capacity, and the current rate of environmental change means 
that our capacity for adaptive change and/or niche construction 
will be inadequate to permit survival if we do not address core is-
sues now. DM will help define prognosis but offers little hope for 
cure if the Anthropocene trajectory tracks along its current path for 
too much longer.

Conclusions

Evolutionary theory provides a critical framework to understand 
how human disease arises and might be best treated. Therefore, as 
a cognate subject, evolutionary biology should be integrated into 
clinical and biomedical training as a core discipline and is ideally 
placed to examine the aspects of both disease causation and preven-
tion. Although DM is a nascent discipline, it has a broad domain, 
which encompasses ageing, immunity, reproductive health, cancer, 
infectious disease, diet-culture interactions, the microbiome, be-
havioural conditions, and the application of personalised medicine 

(particularly given easy access to the reference SNP cluster ID data 
collected using commercial DNA arrays [i.e., AncestryDNA and 
23andMe] combined with programs such as Promethease, which 
generates a report using sites, such as SNPedia.com).

Several core principles of DM exist, and a number of these were 
discussed, including selection, drift, plasticity, mismatch, cultural 
practices, trade-offs, life history traits, antagonistic pleiotropy, 
heterozygote advantage, constraints, biological defences, co-evo-
lution (i.e., with the microbiome), adaptation/maladaptation, novel 
environments, and the genome-phenome relationship.
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